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O F  A R A R E F I E D  P L A S M A  O V E R  A B O D Y  

S .  I .  A n i s i m o v ,  Y u .  V .  M e d v e d e v ,  
a n d  L. P .  P i t a e v s k i i  
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In the s tudy of qual i ta t ive f ea tu re s  of flow of a r a r e f i e d  p l a s m a  ove r  bodies in ionospheric  
a e r o d y n a m i c s ,  the p r o b l e m  of flow behind a two-d imens iona l  plate  is often cons idered .  The 
formula t ion  of this p r o b l e m  and its  r e l a t ion  to flow o v e r  r e a l  objects  was cons idered  in 
detai l  in [1]. This model  p r o b l e m  has been  analyzed in a number  of paper s  using two main 
app roaches :  desc r ip t ion  of the flow with the help of the s imi l a r i t y  solution found in [2, 3], 
and numer i ca l  solut ion of the equations of p l a s m a  motion [4-7]. A r ev i ew  o f  the main 
r e su l t s  obtained by the two methods can be found in [1, 6]. This paper  gives a numer i ca l  
solution of the p r o b l e m  of t r a n s v e r s e  superson ic  flow ove r  a f lat  plate.  The p l a s m a  is 
a s s u m e d  to be co t l i s ion less  and is desc r ibed  by the kinetic equation with a s e l f - cons i s t en t  
field. The p a r t i c l e - i n - c e l l  method is used to solve the kinetic equation. In con t ra s t  with 
m o s t  n u m e r i c a l  calcula t ions  p rev ious ly  p e r f o r m e d  [4-6], the p re sen t  paper  cons iders  the 
case ,  of  g r e a t e r  p r ac t i ca l  in t e res t ,  of flow ove r  a body whose dimension g is much g r e a t e r  
than the Debye rad ius  D i in the unper turbed  p l a sma .  P rac t i ca l l y  all  the known r e su l t s  for this  
ca se  have been obtained using the s i m i l a r i t y  solution [2, 3], which is not valid,  however ,  in the 
en t i re  reg ion  of unper tu rbed  flow, and the re fo re  does not give a comple te  solution to the p rob -  
l em.  Individual numer i ca l  calculat ions (see [7]) do not add much to the s imi l a r i t y  ana lys i s ,  
s ince they r e f e r  to a v e r y  na r row  range  of the flow p a r a m e t e r s .  The main emphas i s  in the 
p r e sen t  paper  is the study of wake s t r u c t u r e  behind a f lat  plate and p l a s m a  instabi l i ty  in the 
wake. The computat ions  were  p e r f o r m e d  in a wide range  of var ia t ion  of the r a t io  ~ = Te/Ti,  
and one can follow the p r o c e s s e s  of ion acce le ra t ion ,  in terac t ion  of the acce le ra t ed  group of 
ions with the p l a s m a ,  development  of b e a m - t y p e  ins tabi l i ty  [1, 8], and format ion and decay of 
the turbulent  wake. The quali tat ive wake s t r u c t u r e  fea tures  d iscussed  below a r e  a lso  found, 
of course ,  in p l a s m a  flow ove r  ac tual  t h ree -d imens iona l  bodies.  

1. The formula t ion  of the p r o b l e m  adopted he re  was d i scussed  in detail  in [11. We consider  s t eady- s t a t e  
p l a s m a  flow nea r  a two-d imens iona l  p la te .  The p l a s m a  veloc i ty  V far  f r o m  the p la te  is d i rec ted  normal  to it 

and sa t i s f i es  the inequali t ies  
VTe/m~ << Y << ~'rTelme. (1.1) 

The f i r s t  inequali ty indicates  that  the flow is superson ic .  Behind the plate a cy l indr ica l  region r e m a i n s  f ree  
f r o m  ions,  with a c r o s s  sect ion equal  to the plate  a r ea .  In this reg ion ,  as in vacuum,  the p l a sma  expands.  In a 
coordinate  s y s t e m  in which the p l a s m a  is a t  r e s t  far  f rom the bodys the filling up of the cyl indr ica l  cavi ty  is an 
uns teady p r o c e s s  which a c c u r a t e l y  c o r r e s p o n d s  to f ree  expansion of a p l a sma  into vacuum [2, 3, 9] until co l -  
l is ion o c c u r s  between the two pa r t i c l e  fluxes reach ing  the cavi ty  f rom opposite d i rec t ions .  In the coordinate  
s y s t e m  fixed in the body, the flow is s t e a d y - s t a t e  and is a superpos i t ion  of a t r a n s v e r s e  expansion and a longi-  
tudinal dr i f t  with ve loc i ty  V. Thus,  the wake s t ruc tu re  in succes s ive  c r o s s  sect ions  a t  d i f ferent  d is tances  z 
f r o m  the plate  c o r r e s p o n d s  to succes s ive  s tages  of  uns teady filling of the cavi ty  by the p l a sma .  One flow is 
obtained f r o m  the o ther  by the subst i tut ion z - - V t .  This analogy,  which is well known f rom hypersonic  a e r o -  
dynamics  [10], and is d i scussed  in detai l  in [1, 5], is used ex tens ive ly  in the calculat ions below. 
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The second of inequalities (1.1) indicates that the speed of motion of the plasma re la t ive  to the plate is 
much less than the thermal  speed of the e lect rons .  With this condition one can simplify the problem and con-  
sider the e lectron distribution as being in local�9 equil ibrium in a se l f -cons is ten t  e lec t r ic  field; i.e. D one can put 

ne = n 0 exp (e~/Te), (1.2} 

where n e is the e lectron density and ~0 is the se l f -cons is ten t  f ie ldpotent ia l .*  The latter is determined by 
solving Poisson ' s  equation 

h~ + 4~e(ni --  he) = 0, (1.3) 

where nt = ~/~(r, v)dv is the ion density; fi(r,  v), ion distribution function; and n e, given by Eq. (1.2). 

The ion distribution function can be found by s olving the coll is ionless kinetic equation 

V + 0~ ~ - - ~ 0 =  =0"  (1.4) 

In writing Eq. (1.4) it is assumed that the velocity V is directed along the z axis and the plate is of infinite 
extent in the y direction. The lat ter  assumption was adopted for s implici ty (the problem with cylin~cical sym-  
met ry  would be c loser  to reality} and allows one to neglect  the derivat ives of the distribution function and the 
potential with r e s pec t  to y. We note that for large flow velocit ies V the e lec t r ic  field component E z = -  8~/0z is 
also small  compared with E x =-~r and is therefore  omitted in the equations as written. The function 
fix, z, Vx), determined by Eq. (1.4), is obtained f rom the original  ion distr ibution function fi(r,  v) by integration 
over  the velocity components Vy and Vz, which do not appear in the equation. 

To solve sys tem (1.2)-(1.4) the pa r t i c l e - in -ce l l  method [111 is used. Since the electrons a re  assumed to 
have a Boltzmann distribution, the modeling is ca r r i ed  out for onty one kind of par t ic le ,  the ion. However, then 
the equation for the potential ~0 becomes nonlinear. 

Integration of the sys tem was car r ied  out for the following boundary conditions. For z >0 in the plane of 
s y m m e t r y  x = 0 the m i r r o r  ref lect ion condition was applied for par t ic les ,  and the e lec t r ic  field was assumed to 
be zero.  The same conditions were applied at the boundary of the computational region x = R 0. At z = 0 in the 
region 0 <-x <-R there are  no par t ic les ,  the region R < x <-R 0 is filled uniformly with plasma,  and the ions there 
have a Maxwellian distribution with r e spec t  to v x. A numerical  solution of this problem was obtained for the 
following region of values of var iables  and pa rame te r s  : 

0 ~  z ~.~ 250V(o~i; 0 ~ X ~ B o ;  B = i00D~; 

200 ~. Bo/Di ~-~ 600; i ~ T~/Ti ~ 200. 

2. The resul ts  of the computations can be conveniently represented  by the use of dimensionless var iables .  
The x coordinate is r e fe renced  to the ion Debye radius of the unperturbed p lasma Di, and the z coordinate is 
re ferenced  to the length Vwp~, equal to the Debye radius Di, multiplied by the Mach number of the unperturbed 
flow. The unit of velocity was chosen to be ~ t h e  unit of potential was Ti/e, the unit of e lec t r ic  field 
intensity was 4~/4-~0Ti, and the unit of density was n 0. Energy is expressed  in terms of the energy of ions of the 
unperturbed plasma column of unit c ross  section with a length equal to the Debye radius.  

We consider  f i rs t  the case  of a s ing le - t empera tu re  plasma (T e = Ti). For small  z the plasma motion in 
the x direct ion is an o rd inary  expansion into vacuum. For z ~20 interact ion of the s t r eams  reaching the wake 
f rom opposite sides becomes noticeable,  and the expansion is slowed. The ion velocity V0x t averaged over  the  
whole range of values of x, the displacement  of the center  of mass  AX0, and the quantity R - Xm (Xm is the 
coordinate of the large ion front) a re  shown in Fig. 1 as a function of the coordinate z. In the initial stage the 
mean -mass  motion occurs  with constant  acce lera t ion  [9], and then for z ~ 40 motion at constant  speed is 
established. The broken line in Fig. 1 shows the same relat ionships  for a free expansion into vacuum. 

The expansion into vacuum is accompanied by accelera t ion of the ions in the e lec t r ic  field. The total ion 
component energy e i here inc reases ,  while the electronic component r e decreases  l inear ly  [9] with t ime.  The 
same thing occurs  in the wake at  the initial stage of filling, when the p lasma flux does not yet  "know'  that there 
is another flux f rom the opposite side of the wake (Fig. 2). The ion acce lera t ion  p rocess  continues, even after  
coll ision of the flows, although it becomes significantly slower than in the free expansion (the latter corresponds  
to the broken lines in Fig. 2). 

*We note that at  sufficiently large dis tances f rom the body the filling of the ra re f ied  zone occurs  with a speed 
on the o rder  of the thermal  speed of the ions. In this region Eq. (1.2) holds for any body speed. 
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2he  i n t e r a c t i o n  of the  two s t r e a m s  a p p r e c i a b l y  a l t e r s  the f o r m  of  the ion d i s t r i b u t i o n  funct ion .  F i g u r e  3 

shows  the d i s t r i b u t i o n  func t ion ,  i n t e g r a t e d  with r e s p e c t  to x,  

R ,  

F (z, v~) = .I I (z, ~,v=)dz, 
0 

a t  d i f f e r e n t  c r o s s  s e c t i o n s  of  the wake  (the c r o s s - s e c t i o n a l  c o o r d i n a t e  is  shown on each  c u r v e ;  the funct ion is  
n o r m a l i z e d  to the  v a l u e  a t  m a x i m u m ;  the so l id  c u r v e  c o r r e s p o n d s  to R0= 400, and the o t h e r  c u r v e s  to R0= 600). 
With i n c r e a s e  of  z t h e r e  is  a s i g n i f i c a n t  r e d i s t r i b u t i o n  of  the i n i t i a l  Maxwel l i an  d i s t r i b u t i o n  funct ion.  In i t i a l l y  
t h e r e  is  an  i n c r e a s e  in the n u m b e r  of  p a r t i c l e s  with l a r g e  n e g a t i v e  v e l o c i t i e s  ( i . e . ,  d i r e c t e d  away  f r o m  the 
c e n t e r  of  the  wake) ,  and  then a s econd  m a x i m u m  a p p e a r s  in the  ion d i s t r i b u t i o n .  

F i g u r e  4 shows  a f a m i l y  of  equa l  p o t e n t i a l  l i n e s  in the  xz p l ane .  2he  p a r a m e t e r  i s  the  po t e n t i a l .  F o r  
T e =  T i the  p o t e n t i a l  i s  a mono ton i c  func t ion  of  the two v a r i a b l e s .  ~t~e e n e r g y  d e n s i t y  of  the  s e l f - c o n s i s t e n t f i e l d  
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inc reases  rapidly  with increase  of  z, and on the average  is only an insignificant par t  of the par t ic le  energy 
density.  We note, incidentally, that the absence of potential oscil lat ions for T e-- T i is also confirmed f rom the 
r e s u l t s  of [7], and is associa ted  with the g rea t  attenuation of the ion sound in this case.  

We now consider  the case  of  an  unequal - tempera ture  p lasma,  with T e # T i. The qualitative picture of 
the flow in this case  is re ta ined,  in the main. However, a number of quantitative flow charac te r i s t i c s  show a 
s t rong dependence on the nonisothermal  pa rame te r  ~ = Te/T i. 

With inc rease  of fl there  is an increased  speed of wake filling by the plasma and in the ra te  of coll is ion- 
less exchange of energy  between the e lectron and ion components.  The total energy t r ans fe r red  f rom the e lec-  
t rons to the ions inc reases  l inear ly  with fl, over a wide range of values of ~, and is approximately  one-third of 
the initial e lect ron energy.  The ion component energy is shown in Fig. 5 as a function of z, for different values 
of ft. The left scale is for fl = 10 and 50, and the r ight  scale is for /3-- 100 and 200. 

For  Te>> T i there is a ve ry  abrupt  redis t r ibut ion  in the ion distribution function during the wake filling 
p rocess .  Figure 6 shows the distr ibution function F(z, Vx) , integrated over  x, for/3= 10, at  various wake sec -  
t ions. It can be seen that even for z =40 the ion distr ibution has a pronounced bimodal form. 

It was shown in [1] that one should expect  beam-type  instability in the filling of spaces behind a flat 
plate. Naturally, the development of instabil i ty is facilitated with increase  in the tempera ture  rat io ft. Figure 7 
shows the increase  in e lec t r ic  field energy with z, resul t ing  f rom excitation of ion-acoust ic  waves, for various 
values of ft. The ex t reme left scale cor responds  to fl = 10, the left scale to fl = 50, and the r ight  scale to fl = 100 
and 200. The instabil i ty increment ,  evaluated f rom the calculat ions,  is on the o rde r  of 0.01Wpi for fl = 10 and 
0.02Wpi for /3=200. Figure 8 shows equal potential lines in the xz plane for fl= 200. The picture differs quali-  
tat ively f rom that shown in Fig. 4 for the case fl= 1. For z >50 the potential distr ibution has the charac te r  of 
d isordered  fluctuations whose amplitude f i r s t  inc reases  with increase  of z, and then slowly decays.  This can be 
seen ve ry  well in Fig. 9, which shows the potential distr ibution at various c ros s  sections of the wake for 
/3=200. 

For smal le r /3  the potential osci l la t ions have smal le r  amplitude and a re  more  ordered in nature, so that 
one can speak of a qualitative ag reement  of the pic ture  obtained with the resu l t s  of [4], which considered 
plasma flow with cold ions nea r  a sphere of radius  R ~ D e. 

Compar ison of the computed resul t s  with the s imi la r i ty  solution shows that the latter gives a pract ical ly  
exact  quantitative descr ipt ion of the flow at dis tances f rom the body where the interaction of the fluxes 
a r r iv ing  f rom opposite sides of the wake does not play an appreciable part.  This region decreases  with increase  
of / / .  For large z the flow cha rac t e r  is de termined by instabili ty,  and the picture of instability development is 
in qualitative ag reement  with the analysis  made in [1]. 

The authors  thank A. V. Gurevich for d iscuss ion of the resu l t s .  
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A C A L C U L A T I O N  O F  T H E  P A R A M E T E R S  O F  T H E  

J E T  F O R M E D  I N  T H E  C O L L A P S E  O F  A B U B B L E  

HIGH-SPEED 

O. V. V o i n o v  UDC 532.529.6 

As is known, the col lapse  of vapor  bubbles in a liquid can cause  the intensive des t ruc t ion  of 
solid boundary su r faces .  Expe r imen ta l  and theore t ica l  invest igat ions of  bubble col lapse  have 
led to the conclusion that  the su r face  of a bubble can de fo rm and a liquid je t  d i rec ted  toward 
the solid su r face  can fo rm in the p r o c e s s  [1, 2]. In the theore t ica l  r e p o r t s  [3, 4] too low ie t  
ve loci t ies  were  obtained,  inadequate to explain the des t ruc t ion  of the su r face  in a single 
impact .  In [5] it  was found as a r e s u l t  of  numer i ca l  calculat ions that  the fo rmat ion  of jets: 
pos se s s ing  enormous  ve loc i t ies  is poss ib le .  It was also found that two fundamenta l ly  d i f ferent  
s chemes  of je t  fo rmat ion  a r e  poss ib le  in the col lapse  of a bubble near  a wall.  The t rans i t ion  
f r o m  one scheme to the o ther  occu r s  upon a r e l a t ive ly  s m a l l  change in the initial  shape of the 
bubble. In the p r e s e n t  r e p o r t  we inves t iga te  the case  of suff icient ly smal l  init ial  de fo rmat ions  
of a bubble when the reg ion  occupied by the bubble r e m a i n s  s imply  connected during the 
fo rmat ion  of the jet;  i .e . ,  the separa t ion  of a smal l  bubble f r o m  the bubble does not occur .  In 
the case  of the second scheme of bubble col lapse  near  a wall the connectedness  of  the f ree  
boundary is d is rupted and a smal l  bubble s epa ra t e s  off during the fo rmat ion  of the jet.  

In an ideal  i ncompres s ib l e  liquid, bounded by a plane solid su r f ace  and s ta t ionary  a t  infinity, the re  is a 
bubble. At the boundary of the bubble the liquid p r e s s u r e  is p= 0 and a t  infinity p = p ~ .  At the s ta r t ing  t ime  
t = 0  the shape and posi t ion of the bubble a r e  given. It is r equ i r ed  to de t e rmine  the motion of the liquid and the 
shape of the bubble boundary S at t > 0. 

The motion of the liquid was calcula ted numer i ca l ly  on a BESM-6 compute r  using the methodl of c a l -  
culating the potent ia l  mot ions  of a liquid with f r ee  boundar ies  suggested in [6]. In the a x i s y m m e t r i c  p ro b l em 
the bubble contour is r e p r e s e n t e d  with the help of in terpolat ion on a l a rge  number  of r e f e r e n c e  points ( f rom 
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